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Abstract 

Ensemble based filters can be divided into two categories: stochastic filter and 

deterministic filter. Both suffer an outlier problem when they are applied to a nonlinear 

system, especially for the deterministic filter. A nonlinear system generates outliers in an 

ensemble. For a deterministic filter, the outliers can persist for a long time and develop 

into extreme outliers, which tend to generate large analysis errors. 

To address this problem, a random subgrouping technique is developed here to overcome 

the effect of outliers in deterministic filters. The new technique uses deterministic filter 

algebra but adds stochastic information into the filter system through random 

subgrouping.  Test results using random subgrouping technique with two low-order 

models (Lorenz-63 and Lorenz-95) show that the new scheme dramatically improves 

performance compare to both stochastic and deterministic filters. 

 

1. Introduction 

  First introduced by Evensen (1994), the ensemble based filter is emerging as a 

powerful tool for data assimilation (Evensen 2007). The key element of the ensemble 

based filter is to derive the forecast uncertainty from an ensemble of model integrations. 

The ensemble based filter can be divided into two categories: stochastic filter and 

deterministic filter. The two categories of methods differ mainly in how they update the 

ensemble after updating the analysis mean.  The updated analysis variance is produced by 

the error variances from both the forecast and observation.  A deterministic filter 

(Anderson 2001, Bishop et al. 2001, Whitaker and Hamill 2002, Tippett et al 2003, 

Sakov and Oke 2008), also called an Ensemble Square Root Filter (EnSRF), transforms 
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the ensemble anomaly to match the theoretical variance given by the Kalman Filter (KF) 

theory (Kalman 1960), while a stochastic filter (EnKF) attempts to match the updated 

variance with the KF theory by adding perturbations to the observations (Burger 1998, 

Houtekamer and Mitchell 1998, Evensen 2003 ).  

The Ensemble based filter theory assumes that the background uncertainty and 

observation noise are Gaussian white and that the ensemble resolves the background 

uncertainty. These hypotheses introduce two error sources into the analysis: the sampling 

errors from the limited ensemble size (Whitaker and Hamill 2002, Sacher and Bartello 

2008) and the non-Gaussian probability density function (PDF) of the error from a 

nonlinear system. The sampling error in EnKF shows in both background uncertainty and 

observational uncertainty. An EnSRF avoids the sampling error introduced by perturbed 

observation and tends to generate better analysis than an EnKF in a linear model 

especially for a small ensemble size (~10-20) (Whitaker and Hamill 2002, Evensen 2003, 

Anderson 2010).  

      However, an EnKF performs better than EnSRF when they face the challenges from 

non-Gaussian PDFs (Lawsen and Hansen 2004, Lei et al 2010, Anderson 2010). A 

nonlinear system tends to generate outliers in an ensemble.  An EnKF can mix the 

outliers by adding random noise to the ensemble members through perturbed observation. 

Therefore the effect of outliers is relatively weak.  An EnSRF tends to have persistent 

outliers because it has no effective way to “pull” the outliers back to the right track. A 

persistent outlier can therefore drift afar to become an extreme outlier, leading to a large 

analysis error or filter divergence (Lawsen and Hansen 2004, Anderson 2010). 

Furthermore, a larger ensemble size will have more outliers, so an EnSRF for a nonlinear 
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system performs worse as the ensemble size increases (Lawsen and Hansen 2004, 

Mitchell and Houtekamer 2009, Anderson 2010). 

 To improve the performance of the ensemble based filter in a nonlinear system, 

the key is to eliminate the effect of outliers. Several methods have been proposed recently. 

For example, Sakov and Oke (2008) use a random transformation to prevent outliers in 

the EnSRF, while Anderson (2010) uses a rank histogram filter to eliminate outliers. Here 

a new filter scheme, called the random subgrouping Ensemble based filter (sEnSRF), is 

proposed to eliminate the distortion effect of outliers and therefore to improve the filter 

performance in a nonlinear system.  sEnSRF randomly divides the entire ensemble into 

subgroups of equal size and updates each subgroup independently using EnSRF.  In 

comparison with EnSRF and EnKF, sEnSRF improves the filter analysis in a nonlinear 

system significantly. In section 2, the algorithm of the ensemble based filter and sEnSRF 

are briefly described. We will demonstrate the performance of SEnSRF in simple concept 

models in section 3. A summary will be given in section 4. 

 

2 The Random Subgroup Ensemble Based Filters    

Data assimilation merges the model forecasts with the observation statistically to 

generate analysis with a reduced error. Assume  is an n-dimensional column 

vector for the model state at time t and yt is the observation at time t, data assimilation 

solves the conditional probability distribution density function (PDF)  of 

model states at time t, where . Based on Bayes' rule, the 

conditional probability distribution can be written as  
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Kalman Filter 

The KF can achieve an optimal estimation of  for either a minimum variance sense 

or a maximum likelihood sense with the assumption of error from Gaussian PDFs, which 

can be represented by the mean and covariance, 

         (2) 

The KF updates the analysis conditional mean (xa) and variance (Pa) as  

   (3) 

     (4) 

where  is the Kalman gain which is weighting coefficient 

matrix related to the uncertainties of forecast and observation. The H is the linearized 

mapping function from state variables to observation space, y=Hx.  The observational 

uncertainty R is given by observation itself. The forecast uncertainty Pf is advanced from 

previous Pa by using Kolmogorov equation. 

 

EnKF 

Different from KF, ensemble method uses a Monte Carlo method to generate an 

ensemble to sample  and integrates the ensemble to achieve which 

resolves , where i=1,2,…,N. The observations are treated as random 

variables that are perturbed to sample the uncertainty of observations, so the analysis 

variance will match what derived theoretically in KF in eqn. (4) (Burgers et al 1998, 

Houtekamer and Mitchell 1998). 
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    (5)  

 

EnSRF 

EnSRF transforms the forecast ensemble to match the analysis error as in (3) and (4). 

This paper will show the results of Ensemble adjustment filter (EAKF, Anderson 2001, 

2003). Similar results are also obtained for subgrouping schemes on other EnSRFs, such 

as the ensemble transform filter (ETKF, Bishop et al. 2001). As one type of EnSRF, 

EAKF updates the ensemble in two steps (Anderson 2003). First it derives the analysis 

ensemble mean and variance and computes the ensemble increment for the ensemble to 

match the analysis error in the observation space. Then, the ensemble increment is 

distributed over relevant state variables through a least square fitting.  

 

sEnSRF 

 What is to be introduced is a simple, yet new filter scheme called random subgrouping 

EnSRF (sEnSRF). This scheme is the same as a regular EnSRF except that the entire 

ensemble is sub-grouped randomly at each analysis step. In sEnSRF, at each analysis step, 

the entire ensemble is divided into sub-ensembles of equal size randomly; all the sub-

ensembles are updated independently using the same observation, but its own background 

covariance.  Each sub-ensemble will have a different combination of ensemble members 

at different analysis time and the analysis and forecast are constructed using the entire 

ensemble.  Therefore, sEnSRF shares the same algebra as EnSRF, but adds some 

stochastic variability through the random subgrouping. This random subgrouping helps to 

eliminate the persistent outliers because any ensemble member will be grouped into 
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different sub-ensembles at different analysis times randomly and therefore will have little 

chance to drift away persistently too far from the ensemble mean analysis. The objective 

of our sub-grouping therefore differs from that of Houtekamer and Mitchell (1998), 

where a sub-grouping is used to reduce the negative bias in the analysis error variance. 

Here, the random subgrouping is used to eliminate the effect of persistent outliers that 

often occur in a regular EnSRF.  Therefore, sEnSRF is still a square root method but no 

longer deterministic. Specifically, sEnSRF can be performed generically in 4 steps, as 

shown schematically in Figure 1:  

(1) the model ensemble is integrated forward until the observation arrives; 

(2) the N-member ensemble is divided into n sub-ensembles, randomly, each of N/n 

members; 

(3) each sub-ensemble is updated independently using EnSRF with the same observation; 

 (4) steps 1 to 3 are repeated until the all the observation arrives. 

It is conceivable that sEnSRF can perform better than EnKF and EnSRF in a strongly 

nonlinear system because it avoids the effect of outliers that often occurs in EnSRF and 

the sample error that is introduced by perturbing observation in EnKF. 

 

3.  sEnSRF in the Lorenz model   

A) The sEnSRF Scheme 

We first apply sEnSRF to EAKF in the Lorenz63 model (Appendix A). Hereafter, a 

random subgrouping EAKF into n sub-groups will be denoted as sEnSRFn. Our sEnSRFn 

will be compared with the EnKF and EAKF on the same system using the same 

observation and same initial condition.  
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Due to the strong nonlinear nature of the Lorenz63 model, it is easy to produce 

outliers in a 100-member ensemble in EnKF or EnSRF simulation, but not in SEAKF10 

(Fig. 2). In EAKF (Fig.2b), an extreme outlier persists for a long time, with a deviation 

about one order larger than the ensemble spread. This occurs because of the lack of 

mechanism to pull it back towards the ensemble mean. An EAKF tends to retain high-

order moments through the assimilation process (Anderson 2001), which may be a good 

choice for filter problem. However, this feature also leads to outliers persistent during the 

EAKF assimilation process. The persistent outliers can be separated far away from most 

other members to become extreme outliers, as shown in Fig. 2b. 

The outliers are less extreme in EnKF (Fig.2a) than in EAKF (Fig.2b). This is 

because the random perturbation on observation plays the role to adding random noise to 

outliers in EnKF.  Therefore, an outlier can’t drift too far away from the ensemble mean 

before being pulled back after a few cycles of analyses.  

 Corresponding to the EAKF, the random subgrouping of 10 sub-groups 

(sEAKF10) is performed. The random subgrouping plays a similar role as the perturbed 

observation does in EnKF, so no outliers persist during the assimilation (Fig.2c).  An 

ensemble member that is an outlier in one subgroup combination may be a regular 

member for another subgroup combination in the next step.  As a result, an outlier at one  

analysis step can be eliminated by the random subgrouping at the next analysis step. 

Furthermore, the sEnAF10 has less chance to produce outlier than EnKF and EAKF 

because each sub-ensemble has much smaller sample size than the full ensemble and a 

small sample size produces less outliers. 

The reduced outlier can be quantified through the ensemble kurtosis which is a 
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good index for the presence of outliers 

          (6) 

where  is ensemble mean.  Theoretically the kurtosis of a Gaussian distribution is 3. 

The kurtosis for the y-variable in the Lorenz63 system is calculated from a long control 

run as being 2.5. The time-mean kurtosis of y is ~20 for the EAKF with a 100-member 

ensemble. This is much larger than the kurtosis of the Gaussian distribution. The time-

mean kurtosis of y is ~ 4 for EnKF with a 100-member ensemble, indicating a weak 

effect of outliers relative to Gaussian.  In comparison, the kurtosis of y in SEAKF10 is 2.6. 

This is very close to the kurtosis of the Lorenz63 system and indicates little spurious 

outlines generated by the assimilation scheme. Therefore, sEAKF10 suffers little from the 

outliner problem relative to EnKF and, especially, EAKF.  In other words, the sEAKF10 

retains statistically the 4th-order moment while the EAKF can’t.  

The sEAKF10 also generates the smallest analysis error among the three filter 

schemes, because of its lowest kurtosis. sEAKF10 reduces the root mean square error 

(RMSE) of the analysis to 0.66 for the variable y, which is much smaller than the RMSE 

for EAKF (0.95) and better than the EnKF (0.69).  Statistically, sEAKF10 and EAKF 

simulations show the consistence between RMSE and ensemble spread (figure3b), 

though the ensemble spreads is a slightly smaller than the RMSE (figure 3b). 

Because the persistent outliers distort PDF, some EAKF simulations generate very big 

analysis error (with the RMSE >2) but very small ensemble spread (~ 0.7). In a few cases, 

the EAKF even becomes filter divergent (Fig. 3a). Starting from the same first guess 

(initial conditions) and using the same observations, more than 95% (80%) sEAKF10 
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experiments produce smaller RMSE than EAKF (EnKF).  

 

B) Optimal size of the sub-group 

The number of subgroups (n) is a free parameter in sEAKFn. The question then 

arises: what is the best subgroup number? The random subgrouping scheme eliminates 

the effect of outliers by introducing randomness into the filter system. To fulfill this goal, 

sEAKFn requires enough stochastic freedoms and small enough sub-ensemble size.  If the 

subgroup is too small, the effect of outlier still exists though it is reduced significantly.  

For example, the ensemble kurtosis of sEAKF2 is ~4.8 for the 100-member ensemble 

experiments and ~9.8 for 200-member ensemble experiments (Fig. 4a). However, the 

numbers of subgroup is bounded by the ensemble size.  The biggest subgroup is N/2 for a 

N-member ensemble.  

In the mean time, the sample size for the sub-ensembles cannot be too small. 

When the maxim subgroup is used and each subgroup has only 2 members, the ensemble 

kurtosis all converges to the kurtosis of the Gaussian distribution 3, instead of the truth 

kurtosis 2.5 (Fig.4a).  This occurs because each subgroup has only two members, making 

it impossible to resolve a PDF and the high-order moments beyond that of Gaussian. (The 

Gaussian results from the average of a large number of subgroups). Therefore, both 2th-

order and the 4th-order moments are distorted.  

 A larger ensemble size has more probability to produce outliers and therefore 

requires more subgroups to eliminate outliers. In the mean time, a larger ensemble size 

can accommodate more subgroups.  As a result, for different sizes of the full ensemble, 

the minimum kurtosis seems to be achieved at about the same size of sub-ensemble 
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(Fig.4a), which corresponds to different numbers of subgroups. For the full ensemble 

sizes of 50, 100 and 200, the minimum kurtosis all converges to the system kurtosis 2.5 at 

the sub-ensemble size 5 (Fig. 4a). This is the best subgrouping with the forth-order 

moment conserved and the effect of outliers removed.  

It is conceivable that a reduced error in sampling kurtosis should reduce the 

outliers and therefore improve the filter performance. This is indeed the case as seen in 

the corresponding RMSE (Fig.4b). Overall, the filter performance largely follows the 

sample kurtosis for our system. Smaller RMSE occurs for smaller sample kurtosis. For 

the 100-member ensemble size, sEAKF20 gives the smallest analysis RMSE, which is 

reduced by 30% from that of the standard EAKF. This size of sub-sample 5, with the best 

sample kurtosis, also appears to be the optimal sub-sample size with the smallest RMSE 

for other sizes of the full ensemble. 

C) Sampling error for subgrouping 

Our random subgrouping scheme successfully removes the outliers and maintains 

the high-order moments, but it also introduces sampling errors into the filter simulation. 

Since each sub-ensemble has a much smaller sample size than the full ensemble, the 

background uncertainty from an individual sub-ensemble has a greater sampling error 

than that of the full ensemble. However, the PDFs constructed from all the sub-ensembles 

automatically represent the uncertainty of the forecast error PDFs, which leads to a 

compensation of the sampling error generated by the subgrouping. Therefore the net 

increase in sampling error can still be limited.  

A Mont Carlo method is used to evaluate the sampling error caused by 

subgrouping (Fig. 5). 100 samples are used to resolve a Gaussian PDF. The subgrouping 
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scheme is also implied during variance calculation. The total sample variance is the 

average variance of each subgroup. For example, the 100 samples are divided into n 

groups of 100/n samples and calculate the variance independently for each subgroup and 

then average them to get the total variance. The variance uncertainty produced by limited 

sampling is represented by the standard deviation of variances from 100,000 Monte Carlo 

experiments.  

 The expected variance uncertainty from sampling error for a single variable 

Gaussian PDF constructed by 100 samples increase from 14% to 16% of total variance 

when the subgroup number increase from 1 to 20, which represents only a 2% increase in 

the total variance. It is negligible compared with the effect of outliers in EAKF for 

Lorenz system. As a result, the sEAKFn performs significantly better than EAKF. 

D) Subgrouping in EnKF   

An EnKF can also benefit from random subgrouping for big ensemble experiments 

because there are weak effects from outliers in EnKF simulations. The kurtosis of EnKF 

is ~4 for the 100-member ensemble experiments and ~6 for 200-member ensemble 

experiments (figure 4).  The subgrouping scheme is applied in the EnKF 100-member 

ensemble experiments.  The analysis RMSE decreases 4% comparing with EnKF and the 

kurtosis decreases to ~3 when the 5 sub-ensemble are used (figure not show). 

 

E) sEnSRF in Lorenz 96 model 

The improvement of analysis by sEnSRF can also be shown in the Lorenz96 

model (Lorenz, 1996) (Appendix B). In addition, in Lorenz96 model, we can also study 

the effectiveness of sEnSRF to systems of different levels of chaos. (Table 1). When the 
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system is near neutral (F=2), the RMSE are comparable in sEAKFn and EAKF, implying 

an insensitive to the subgrouping scheme.  As the system becomes more chaotic, 

sEAKFn performs better than EAKF.  For the strongly chaotic cases (F=8, 10), the 

RMSE is reduced by ~10% in sEAKF10 than in EAKF. Similar to the low dimension case 

in Lorenz63 model, sEAKFn performs better as the number of subgroups increases.  

 

4. Summary  

The persistent outlier problem arising from non-Gaussian PDFs is a challenge for 

ensemble based filter, especially for EnSRF of large ensemble size (Lawsen and Hansen 

2004, Anderson 2010, Lei et al 2010).  The sEnSRF scheme solves this problem with a 

random subgrouping in EnSRF, improving the data assimilation quality in nonlinear 

systems significantly.  The sEnSRF uses the formula of EnSRF for each subgroup, but is 

no longer a deterministic filter.  It avoids sampling errors introduced by the perturbation 

on observations and eliminates the effect of outliers. It also can retain the high-order 

moments through the assimilation process.  

The random subgrouping eliminates outliers in two ways. First, the smaller size of 

each sub-ensemble leaves less chance to produce outliers compared with full ensemble.  

Second, the random subgrouping introduces randomness into the filter system to 

eliminate the existing outliers. 

 sEnSRF is applied to two simple models: the Lorenz63 model and the Lorenz96 

model. The random subgrouping improves the filter analysis significantly relative to both 

the stochastic filter EnKF and the deterministic filter EnSRF. Comparing  with 

deterministic filter, it can decrease 10 ~30% of analysis error under strong chaotic 
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conditions. 

 One advantage of sEnSRF is its simplicity and practicality. sEnSRF can be easily 

applied to a high dimension system. It is particular effective in highly chaotic systems 

which tend to generate more extreme outliers. Therefore, we propose sEnSRF as an 

effective and practical assimilation method for complex weather and climate models.  

 

 

Table 1 The mean analysis RMSE for sEAKFn and EAKF on Lorenz95 system from 200 

realizations. The first column denotes the forcing term in the system.   

 sEAKF10 sEAKF5 sEAKF2 EAKF 

F=2    0.0253    0.0247    0.0251    0.0251 

F=5    0.1424    0.1445    0.1545    0.1545 

F=8    0.3131    0.3147    0.3487    0.3492 

F=10    0.3745    0.3774    0.4217    0.4227 

 

 

 

 

 

 

Appendix A Lorenz model  

The Lorenz model (Lorenz 1963) describes one of the most famous nonlinear dynamical 

systems 
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The parameter  is the ratio of the Rayleigh number divided by the critical Rayleigh 

number. The parameter  is the Prandtl number. The third parameter c is related to the 

horizontal wave number of the system. By choosing typical values of the parameters (  

= 28, =10, c=8/3). The evolution of the state vector (x, y, z) describes the well-known 

Lorenz attractor.  

The model is integrated using a 4-th order Runge-Kutta method with a time resolution of 

dt=0.01 (~1 hours if we treat one time unit as 4 days). We first generate the “truth” in a 

long control simulation of 1000 time units and the “observation ”by adding on the “truth” 

random errors with standard derivation (2, 2, 2).  

For most of the experiments, the observation time interval use 0.1 and ensemble size use 

100. The inflation scheme was not used in all the experiments for the fare comparison.   

 

 

 

Appendix B 

Lorenz 96 model is a latitude circle model first proposed by Lorenz (1996) to study 

fundamental issues regarding the forecasting of spatially extended chaotic systems such 

as the atmosphere. It has N state variables governed by equation 
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where i = 1,…,N with a cyclic indices.  The N equals to 200 for our simulations. The 

model is integrated using a 4-th order Runge-Kutta method with a time resolution of 

dt=0.01. To investigate the filter performance under different conditions, the forcing term 

F choose 2, 5, 8, 10, which let the system shift from almost linear to strong chaos.  

All the simulations use ensemble size 100 and a perfect observation system with 

observation frequency 0.1 (10 time steps) and the error standard derivation 1. The 

influence radius for localization is 11 for all the simulation.  The inflation scheme was 

used  in all the experiments 

 

 

Figure 1 Flow chart of the SEnSRF data assimilation system for the case of 25-member 

ensemble and 5 subgroups. Each small square denotes an ensemble member and each line 

denotes a sub-ensemble.  

 

Figure 2 Initial error evolution of 100 ensemble members (black lines) and the ensemble 

means (red lines) for variable y in Lorenz system. (a) is for EnKF simulation; (b) is for 

EAKF simulation and (c) is for SEAKF10 simulation.  (The figure follows figure 3 in 

Anderson 2010).  

 

Figure 3 The scatter diagram of analysis RMSE and ensemble spread of variable y for 

different filter schemes. Each filter scheme has 200 realizations.  The red dots are for 

EAKF simulation, green circles are for EnKF and blue stars are for sEAKF10. 
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The lower panel is the fine scale of upper panel. The squares represent the average of 

total 200 experiments, red for EAKF, green for EnKF and blue for sEAKF10. The black 

line denotes that the RMSE equals to ensemble spread. 

  

Figure 4 The kurtosis and analysis RMSE for different ensemble size are averaged from 

200 realizations.   

 The x coordinator represents the samples for each sub-ensemble.  The blue dot lines are 

for ensemble size 50; green plus lines are for ensemble size 100; and red circle lines are  

for ensemble size  200. The squires represent the results from EnKF simulations.  Two 

black dish lines on upper panel are the kurtosis for Lorenz system (2.5) and for Gaussian 

white distribution (3). 

The kurtosis and RMSE from EAKF are no shown on the plot because they are much 

bigger than the results from EnKF and sEAKFn. 

 

 

Figure 5 The variance uncertainty generated by limited sampling and different subgroups 

for a Gaussian PDF with variance 1. The variance uncertainty derives from 100,000 Mont 

Carlo realizations.  
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Figure 1 Flow chart of the SEnSRF data assimilation system for the case of 25‐
member ensemble and 5 subgroups. Each small square demotes an ensemble 
member and each line denotes a sub‐ensemble.  
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Figure 2 Initial error evolution of 100 ensemble members (black lines) and the 
ensemble means (red lines) for variable y in Lorenz system. (a) is for EnKF 
simulation; (b) is for EAKF simulation and (c) is for SEAKF10 simulation.  (The figure 
follows figure 3 in Anderson 2010).  
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Figure 3 The scatter diagram of analysis RMSE and ensemble spread of variable y 
for different filter schemes. Each filter scheme has 200 realizations.  The red dots 
are for EAKF simulation, green circles are for EnKF and blue stars are for sEAKF10. 
The lower panel is the fine scale of upper panel. The squares represent the average 
of total 200 experiments, red for EAKF, green for EnKF and blue for sEAKF10. The 
black line denotes that the RMSE equals to ensemble spread. 
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Figure 4 The kurtosis and analysis RMSE for different ensemble size are averaged 
from 200 realizations.   
 The x coordinator represents the samples for each sub‐ensemble.  The blue dot 
lines are for ensemble size 50; green plus lines are for ensemble size 100; and red 
circle lines are  for ensemble size  200. The squires represent the results from EnKF 
simulations.  Two black dish lines on upper panel are the kurtosis for Lorenz system 
(2.5) and for Gaussian white distribution (3).   
The kurtosis and RMSE from EAKF are no shown on the plot because they are much 
bigger than the results from EnKF and sEAKFn. 
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Figure 5 The variance uncertainty generated by limited sampling and different 
subgroups for a Gaussian PDF with variance 1. The variance uncertainty derives 
from 100,000 Mont Carlo realizations.  
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